

Approved by: Headteacher \& SLT

Last reviewed: September 2023

Next review: July 2025

About our Calculations Policy

The following calculation policy has been devised to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give our children a consistent and smooth progression of learning in calculations across the school. Please note that early learning in number and calculation in Reception follows the development matters EYFS document, and this calculation policy is designed to build on progressively from the content and methods established in the Early Years Foundation Stage.

Age stage expectations

The calculation policy is organised according to age stage expectations as set out in the National Curriculum 2014, however it is vital that the children are taught according to the stage that they are currently working at, being moved onto the next level as soon as they are ready, or working at a lower stage until they are secure enough to move on.

Providing a context for calculation

It is important that any type of calculation is given a real life context or problem solving approach to help build the children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This must be a priority within calculation lessons.

Choosing a calculation method

Children need to be taught and encouraged to use the following processes in deciding what approach they will take to a calculation, to ensure they select the most appropriate method for the numbers involved.

Year 1 Add with numbers up to 20

Use numbered number lines to add, by counting on in ones. Encourage the children to start with the larger number and count on.
$6+3=9$

Children should:

- Have access to a wide range of counting equipment, everyday objects, number tracks and number lines, and be shown numbers in different contexts.
- Read and write the addition (+) and equals (=) signs within number sentences.
- Interpret addition number sentences and solve missing box problems, using concrete objects and number line addition to solve them: $8+3=$ •

$$
15+4=\cdot \quad 5+3+1=\cdot \quad \cdot+\cdot=6
$$

This builds on from prior learning of adding by combining two sets of objects into one group (5 cubes and 3 cubes) in Early Years.

$$
8+5
$$

Bead strings or bead bars can be used to illustrate addition including bridging through ten by counting on 2 then counting on 3 .

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line

Key skills for addition at Y1:

- Read and write numbers to 100 in numerals, incl. $1-20$ in words
- Recall bonds to 10 and 20, and addition facts within 20
- Count to and across 100
- Count in multiples of 1, 2, 5 and 10
- Solve simple 1-step problems involving addition, using objects, number lines and pictorial representations

Video clips: Using a range of equipment and strategies to reinforce addition statements / bonds to 10

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units/ones, partition, addition, column, tens boundary

Key skills for addition at Y2:

- Add a 2 -digit number and ones (e.g. $27+6$).
- Add a 2-digit number and tens (e.g. $23+40$).
- Add pairs of 2-digit numbers (e.g. $35+47$).
- Add three single-digit numbers (e.g. $5+9+7$).
- Show that adding can be done in any order (the commutative law).
- Recall bonds to 20 fluently and bonds of tens to 100 ($30+70$ etc).
- Count in steps of 2, 3 and 5 from 0 and count in tens from any number forwards and backwards.
- Understand the place value of 2-digit numbers (tens and units/ones).
- Compare and order numbers to 100 using $<>$ and $=$ signs.
- Read and write numbers to at least 100 in numerals and words.
- Solve problems with addition, using concrete objects, pictorial representations, involving numbers, quantities and measures, and applying mental and written methods.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units/ones, partition, plus, addition, column, tens boundary, hundreds boundary, increase, vertical, exchange ,expanded, compact

Key skills for addition at Y3:

- Read and write numbers to 1000 in numerals and words.
- Add 2-digit numbers mentally, incl. those exceeding 100.
- Add a three-digit number and ones mentally (175 + 8).
- Add a three-digit number and tens mentally (249 + 50).
- Add a three-digit number and hundreds mentally (381 + 400).
- Add numbers with up to three-digits using the column addition.
- Estimate answers to calculations, using inverse to check answers.
- Solve problems, including missing number problems, using number facts, place value, and more complex addition.
- Recognise place value of each digit in 3-digit numbers (hundreds, tens, ones).
- Continue to practise a wide range of mental addition strategies, i.e. number bonds, adding the nearest multiple of $10,100,100$ and adjusting, using near doubles, partitioning and recombining.
Video clip: Demonstration of expanded 3-digit column addition

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units/ones, partition, plus, addition, column, tens boundary, hundredṣ boundary, increase, vertical, exchange, expanded, compact, thousands, hundreds, digits, inverse

Key skills for addition at Y4:

- Select most appropriate method: mental, jottings or written and explain why.
- Recognise the place value of each digit in a four-digit number.
- Round any number to the nearest 10, 100 or 1000.
- Estimate and use inverse operations to check answers.
- Solve 2-step problems in context, deciding which operations and methods to use and why.
- Find 1000 more or less than a given number.
- Continue to practise a wide range of mental addition strategies, i.e. number bonds, add the nearest multiple of 10, 100, 1000 and adjust, use near doubles, partitioning and recombining.
- Add numbers with up to 4 digits using the formal written method of column addition
- Solve 2-step problems in contexts, deciding which operations and methods to use and why.
- Estimate and use inverse operations to check answers to a calculation.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units/ones, partition, plus, addition, column, tens boundary, hundreds boundary, increase, exchange, expanded, compact, vertical, thousands, hundreds, digits, inverse, decimal places, decimal point, tenths, hundredths, thousandths

Key skills for addition at Y5:

- Add numbers mentally with increasingly large numbers, using and practising a range of mental strategies i.e. add the nearest multiple of 10, 100, 100 and adjust; use near doubles, inverse, partitioning and re-combining; using number bonds.
- Use rounding to check answers and accuracy.
- Solve multi-step problems in contexts, deciding which operations and methods to use and why.
- Read, write, order and compare numbers to at least 1 million and determine the value of each digit.
- Round any number up to 1000000 to the nearest 10, 100, 1000, 10000 and 100000.
- Add numbers with more than 4 digits using formal written method of column addition.

Year 6 Add several numbers of increasing complexity

Adding several numbers with different numbers of decimal places (including money and measures):

- Tenths, hundredths and thousandths should be correctly aligned, with the decimal point lined up vertically including in the answer row.

Zeros could be added into any empty decimal places, to show there is no value tosdd.
Empty decimal places can be filled with zero to show the place value in each

Adding several numbers with more than 4 digits.

Key vocabulary:

add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units/ones, partition, plus, addition, column, tens boundary, hundreds boundary, increase, exchange, expanded, compact, vertical, thousands, hundreds, digits, inverse, decimal places, decimal point, tenths, hundredths, thousandths.

Key skills for addition at Y6:

- Perform mental calculations, including with mixed operations and large numbers, using and practising a range of mental strategies.
- Solve multi-step problems in context, deciding which operations and methods to use and why.
- Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
- Read, write, order and compare numbers up to 10 million and determine the value of each digit.
- Round any whole number to a required degree of accuracy.
- Pupils understand how to add mentally with larger numbers and calculations of increasing complexity.

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_?

Key skills for subtraction at Y1:

- Given a number, say one more or one less.
- Count to and over 100, forward and back, from any number.
- Represent and use subtraction facts to 20 and within 20.
- Subtract with one-digit and two-digit numbers to 20, including zero.
- Solve one-step problems that involve addition and subtraction, using concrete objects (i.e. bead string, objects, cubes) and pictures, and missing number problems.
- Read and write numbers from 0 to 20 in numerals and words.

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, units/ones

Key skills for subtraction at Y2:

- Recognise the place value of each digit in a two-digit number.
- Recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100.
- Subtract using concrete objects, pictorial representations, 100 squares and mentally, including: a two- digit number and ones, a two-digit number and tens, and two two-digit numbers.
- Show that subtraction of one number from another cannot be done in any order.
- Recognise and use inverse relationship between addition and subtraction, using this to check calculations and missing number problems.
- Solve simple addition and subtraction problems including measures, using concrete objects, pictorial representation, and also applying their increasing knowledge of mental and written methods.
- Read and write numbers to at least 100 in numerals and in words.

Year 3 Subtracting with 2 and 3-digit numbers.

Introduce partitioned column subtraction method.

When learning to 'exchange', explore 'partitioning' in different ways so that pupils understand that when you exchange, the VALUE is the same i.e. $72=70+2=60+12=50+22$ etc. Emphasise that the value hasn't changed, we have just partitioned it in a different way.
STEP 2: introduce
72-47
 'exchanging' through practical subtraction. Make the larger number with Base $6020+12$
$\frac{140+7}{20+5}=$
 10 , then subtract 47 from it.

Before subtracting ' 7 ' from the 72 blocks, they will need to exchange a row of 10 for ten units. Then subtract 7 , and subtract 4 tens.

STEP 3: Once pupils are secure with the understanding of 'exchanging', they can use the partitioned column method to subtract any 2 and 3-digit numbers.

Counting on as a mental strategy for subtraction:

Continue to reinforce counting mas a strategy for close-together numbers (e.g. 121-118) and also for numbers that are "nearly' multiples of $10,100,1000$ or $\mathbf{E s}$, which make it easier to count on (e.g. 102-89, 131-79, or calculating change from $£ 1$ etc.). Start at the smaller number and count on, in tens first, then count on in units to find the rest of the difference:

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_?,difference, count on, strategy, partition, tens, units/ones exchange, decrease, hundreds, value, digit
Key skills for subtraction at Y3:

- Subtract mentally a: 3-digit number and ones, 3-digit number and tens, 3-digit number and hundreds.
- Estimate answers and use inverse operations to check.
- Solve problems, including missing number problems.
- Read and write numbers up to 1000 in numerals and words.
- Find 10 or 100 more or less than a given number.
- Recognise the place value of each digit in a 3-digit number.
- Estimate the answer to calculations and use inverse operations to check answers.
- Subtract numbers with up to three= digits using the formal column method.
- Counting up differences as a mental strategy when numbers are close together or near multi-
 ples of 10
- Practise mental subtraction strategies, such as subtracting near multiples of 10 and adjusting (e.g. subtracting 19 or 21), and select most appropriate methods to subtract, explaining why.
Video clips: 1-Subtraction-teaching children to consider the most appropriate methods before calculating 2- Introducing partitioned column subtraction method, from practical to written

Key vocabulary:

Equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_?, difference, count on, strategy, partition, tens, units/ones exchange, decrease, hundreds, value, digit, inverse
Key skills for subtraction at Y4:

- Subtract by counting on where numbers are close together or they are near to multiples of 10,100 etc.
- Children select the most appropriate and efficient methods for given subtraction calculations.
- Estimate and use inverse operations to check answers.
- Solve addition and subtraction 2 -step problems, choosing which operations and methods to use and why.
- Solve simple measure and money problems involving fractions and decimals to two decimal places.
- Find 1000 more or less than a given number.
- Count backwards through zero, including negative numbers.
- Recognise place value of each digit in a 4-digit number Round any number to the nearest 10,100 or 1000
- Solve number and practical problems that involve the above, with increasingly large positive numbers.

Videos: $\mathbf{1}$ - Subtraction-teaching children to consider the most appropriate methods before calculating
2 - Introducing partitioned column subtraction method, from practical to written
3 - Moving to the compact column method of subtraction (YouTube)

tance between, how many more, how many fewer / less than, most, least, count
back, how many left, how much less is_?, difference, count on, strategy, partition, tens, units/ones, exchange, decrease, hundreds, value, digit, inverse, tenths, hundredths, decimal point, decimal

Key skills for subtraction at Y6:

- Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why.
- Read, write, order and compare numbers up to 10 million and determine the value of each digit
- Round any whole number to a required degree of accuracy
- Use negative numbers in context, and calculate intervals across zero.
- Children need to utilise and consider a range of mental subtraction strategies, jottings and written methods before choosing how to calculate.

See previous videos for introducing the compact column method.

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count

Key skills for multiplication at Y1:

- Count in multiples of 2,5 and 10.
- Solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.
- Make connections between arrays, number patterns, and counting in twos, fives and tens. Begin to understand doubling using concrete objects and pictorial representations.

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times...
Key skills for multiplication at Y2:

- Count in steps of 2, 3 and 5 from zero, and in 10 s from any number.
- Recall and use multiplication facts from the 2,5 and $\mathbf{1 0}$ multiplication tables, including recognising odds and evens.
- Write and calculate number statements using the \mathbf{x} and $=$ signs.
- Show that multiplication can be done in any order (commutative).
- Solve a range of problems involving multiplication, using concrete objects, arrays, repeated addition, mental methods, and multiplication facts.
- Pupils use a variety of language to discuss and describe multiplication.

Video clips:

Teaching for understanding of multiplication facts (YouTube)
Practical multiplication and the commutative law (YouTube)

Year 3 Multiply 2-digits by a single digit number

Introduce the grid method for multiplying 2-digit by single-digits:

Eg. $\quad 23 \times 8=184$

X	20	3
8	160	24

$160+24=184$

Link the layout of the grid to an array initially:

Introduce the grid method with children physically making an array to represent the calculation (e.g. make 8 lots of 23 with 10 s and 1 s place value counters), then translate this to grid method format (see video clip).

To do this, children must be able to:

- Partition numbers into tens and units
- Multiply multiples of ten by a single digit (e.g. 20×4) using their knowledge of multiplication facts and place value
- Recall and work out multiplication facts in the $\mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{8}$ and $\mathbf{1 0}$ times tables
- Work out multiplication facts not known by repeated addition or other taught mental strategies (e.g. by commutative law, working out near multiples and adjusting, using doubling etc.) Strategies to support this are repeated addition using a number line, bead bars and arrays:

$9 \times 4=36$

$000000-000000-000000-000000$

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times, _times as big as, once, twice, three times..., partition, grid method, multiple, product, tens, units/ones, value

Key skills for multiplication:

- Recall and use multiplication facts for the 2, 3, 4, 5, $\mathbf{8}$ and $\mathbf{1 0}$ multiplication tables, and multiply multiples of 10 .
- Write and calculate number statements using the multiplication tables they know, including 2-digit \mathbf{x} single-digit, drawing upon mental methods, and progressing to reliable written methods - grid method.
- Solve multiplication problems, including missing number problems.
- Develop mental strategies using commutativity (e.g. $4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=240$)
- Solve simple problems in contexts, deciding which operations and methods to use.
- Develop efficient mental methods to solve a range of problems e.g. using commutativity ($\mathbf{4 \times 1 2 \times 5}=$ $4 \times 5 \times 12=\mathbf{2 0} \times \mathbf{1 2}=240$) and for missing number problems $\times 5=20,3 x=18, x=32$ Video clips: Teaching the grid method as an interim step (partitioning and counters to introduce grid)

Year 4 Multiply 2 and 3-digits by a single digit, using

all multiplication tables up to 12×12

Developing the grid method:
 $$
\text { od: } 136 \times 5=680
$$

X	100	$\mathbf{3 0}$	$\mathbf{6}$
$\mathbf{5}$	500	150	30

680

Children should be able to:

- Approximate before they calculate, and make this a regular part of their calculating, going back to the approximation to check the reasonableness of their answer. e.g.:
$346 \mathbf{x} 9$ is approximately $350 \times 10=\mathbf{3 5 0 0}$
Record an approximation to check the final answer against.
Multiply multiples of ten and one hundred by a single-digit, using their multiplication table knowledge.
- Recall all times tables up to $\mathbf{1 2 \times 1 2}$

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, array, column, row, commutative, groups of, sets of, lots of, equal groups, times, multiply, times as big as, once, twice, three times... partition, grid method, total, multiple, product, sets of, inverse

Key skills for multiplication at Y4:

- Count in multiples of $6,7,9,25$ and 1000.
- Recall multiplication facts for all multiplication tables up to $\mathbf{1 2 \times 1 2}$.
- Recognise place value of digits in up to 4-digit numbers.
- Use place value, known facts and derived facts to multiply mentally, e.g. multiply by $1,10,100$, by 0 , or to multiply 3 numbers.
- Use commutativity and other strategies mentally $3 \times 6=6 \times 3,2 \times 6 \times 5=10 \times 6,39 \times 7=30 \times 7+9 \times 7$.
- Solve problems with increasingly complex multiplication in a range of contexts.
- Multiply two-digit and three-digit numbers by a one digit number using a formal written method - grid method.
- Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones).
- Recognise and use factor pairs in Mental Calculations commutativity (Swap them round).

Kev vocabularygroups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, _times as big as, once, twice, three times..., partition, grid method, total, multiple, product, inverse, square, abed, pimenumbasfactor, integer, decimal, short/long multiplication, exchange

Key skills for multiplication at Y5:

- Identify multiples and factors, using knowledge of multiplication tables to $\mathbf{1 2 \times 1 2}$
- Solve problems where larger numbers are decomposed into their factors
- Multiply and divide integers and decimals by 10, 100 and 1000
- Recognise and use square and cube numbers and their notation
- Solve problems involving combinations of operations, choosing and using calculations and methods appropriately
- Know and use the vocabulary of Prime numbers, Prime factors and non-prime numbers (composite)
- Multiply numbers up to four-digits by a one or two digit number using a formal written method including Long Multiplication for two-digit numbers

Video clips:

Moving from grid method to a compact method Reinforcing rapid times table recall: Demonstration of long multiplication

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, array, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times...partition, grid method, total, multiple, product, inverse, square, factor, integer, decimal, short / long multiplication, exchange", abed, primenumbers, tenths, hundredths, decimal

Key skills for multiplication at Y6:

- Recall multiplication facts for all times tables up to 12×12 (as Y4 and Y5).
- Multiply multi-digit numbers, up to 4-digit x 2-digit using long multiplication.
- Perform mental calculations with mixed operations and large numbers.
- Solve multi-step problems in a range of contexts, choosing appropriate combinations of operations and methods.
- Estimate answers using round and approximation and determine levels of accuracy.
- Round any integer to a required degree of accuracy.
- Short and long multiplication as in Y5, and multiply decimals with up to 2d.p by a single digit.
- Identify common factors, common multiple and prime numbers.

Video clips:

Moving from grid method to a compact method (YouTube)
Reinforcing rapid times table recall: (YouTube)
Demonstration of long multiplication (SLEP)

Key Vocabulary: share, share equally, one each, two each..., group, groups of, lots of, anray

Key number skills needed for division at Y1:

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations arrays with the support of the teacher.
- Through grouping and sharing small quantities, children begin to understand division, and find simple fractions of objects, numbers and quantities.
- They make connections between arrays, number patterns, and counting in twos, fives and tens.

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over

Key number skills needed for division at $\mathbf{Y} 2$:

- Count in steps of 2,3 , and 5 from 0.
- Recall and use multiplication and division facts for the 2, $\mathbf{5}$ and $\mathbf{1 0}$ multiplication tables, including recognising odd and even numbers.
- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the x, \div and $=$ signs.
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Year 3 Divide 2-digit numbers by a single digit (where there is no remainder in the final answer)

Grouping on a number line:

012345678910111213

Short division: Limit numbers to No remainders in the answer CRcarried (each digit must be a multiple of the divisor).

Real life contexts need to be used routinely to help pupils gain a full understanding, and the ability to recognise the place of division and how to apply it to problems.

Short division: Limit numbers to NO remainders in the final answer, but with remainders occurring within

STEP 1: Children continue to work out unknown division facts by grouping on a number line from zero. They are also now taught the concept of remainders, as in the example. This should be introduced practically and with arrays, as well as being translated to a number line. Children should work towards calculating some basic division facts with remainders mentally for the $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 8 \mathrm{~s}$ and 10 s , ready for 'carrying' remainders across within the short division method.

STEP 2: Once children are secure with division as grouping and demonstrate this using number lines, arrays etc., short division for larger 2-digit numbers should be introduced, initially with carefully selected examples requiring no calculating of remainders at all. Start by introducing the layout of short division by comparing it to an array.

Remind children of correct place value, that 96 is equal to $\mathbf{9 0}$ and 6, but in short division, pose:

- How many 3"s in 9 ? = 3, and record it above the 9 tens.
- How many 3 "s in 6 ? $=2$, and record it above the 6 units.

Step 3 Only taught when pupils can calculate 'remainders'

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, exchange, remainder, multiple

Key number skills needed for division at Y3:

- Recall and use multiplication and division facts for the $2,3,4,5,8$ and 10 multiplication tables (through doubling, connect the 2, 4 and 8 s).
- Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods.
- Solve problems in contexts which include missing number problems, involving multiplication and division.
- Pupils develop efficient mental methods, for example, using multiplication and division facts (e.g. using $3 \times 2=6,6 \div 3=2$ and $2=6 \div 3$) to derive related facts ($30 \times 2=60$, so $60 \div 3=20$ and $20=60 \div 3$).
- Pupils develop reliable written methods for division, starting with calculations of 2-digit numbers by 1-digit numbers and progressing to the formal written method of short division.

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, exchange, remainder, multiple, divisible by, factor

Key number skills needed for division at Y4:

- Recall multiplication and division facts for all numbers up to $\mathbf{1 2} \mathbf{x 1 2}$.
- Use place value, known and derived facts to multiply and divide mentally, including: multiplying and dividing by 10 and 100 and 1.
- Pupils practise to become fluent in the formal written method of short division with exact answers when dividing by a one-digit number.
- Pupils practise mental methods and extend this to three-digit numbers to derive facts, for example $200 \times 3=$ 600 so $600 \div 3=200$.
- Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers. This should include correspondence questions such as three cakes shared equally between 10 children.
- Recognise and use factor pairs.

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, exchange, remainder, multiple, divisible by, factor, inverse, quotient, primenumber, prime factors, composite number (non-prime)

Key number skills needed for division at Y5:

- Recall multiplication and division facts for all numbers up to 12×12 (as in Y4).
- Multiply and divide numbers mentally, drawing upon known facts.
- Identify multiples and factors, including finding all factor pairs of a number, and common factors of two number.
- Solve problems involving multiplication and division where larger numbers are decomposed into their factors.
- Multiply and divide whole numbers and those involving decimals by 10,100 and 1000.
- Use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.
- Work out whether a number up to 100 is prime, and recall prime numbers to 19.
- Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- Use multiplication and division as inverses.
- Interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding (e.g. $98 \div 4=24 \mathrm{r} 2=241 / 2=24.5 \approx 25$).
- Solve problems involving combinations of all four operations, including understanding of the equals sign, and including division for scaling by different fractions and problems involving simple rates.

